Australian Grains Free Air CO₂ Enrichment (AGFACE) program

AGFACE: Elevated CO₂ Research in the Great Southern (dry) Land

Department of Environment and Primary Industries

AGFACE team

DEPI and UM

Australian Government Department of Agriculture

Australian Research Council

AGFACE is a collaborative research program led by the Department of Environment and Primary Industries Victoria and the University of Melbourne, with core funding support from the Grains Research and Development Corporation and the Australian Government Department of Agriculture.

History – Why a FACE in Oz?

- Uncertainty about climate change impact in Oz
- Crop models required verification/validation
 - Links to climate models
- No CO₂ data for crop systems typical of Australia
- Need to understand interactions of eCO₂ with H₂O, N, C allocations in plants
- Three year AGFACE project
 - University of Melbourne & DPI Victoria
 - Data for wheat model verification
- Kimball visit 2005 to AGO

Reports – Laying the groundwork

Carbon Dioxide Fertilisation and Climate Change Policy

Prepared by Will Steffen¹ and Pep Canadell² for the Australian Greenhouse Office April 2005

* Executive Director, International Geosphere Biosphere Program international Project Office, Global Carbon Project

Options for Investigating the Impacts of Elevated Carbon Dioxide on Agricultural Production in Australia

A workshop report by Sara Hely¹, Bill Slattery², Tim Reeves³, and David Ugalde

January 2006

Policy Officer, Australian Greenhouse Office Canberra ¹Assistant Director Greenhouse and Agriculture, Australian Greenhouse Office Canberra ⁴Drofessional Consultant for the Australian Greenhouse Office *Director Greenhouse and Aariculture, Australian Greenhouse Office Canberra.

A Guide to Establish **FACE** Experimentation: Annual Cropping in Australia

Technical Report Released by the National Committee on Elevated CO2 Experimentation, Chair Professor Timothy Reeves.

Prepared by Pep Canadell with contributions from other members of the Technical Advisory Group: Peter Grace. Sara Hely, Mark Howden, Tim Reeves, Bill Slattery, Will Steffen and David Ugalde.

January 2006

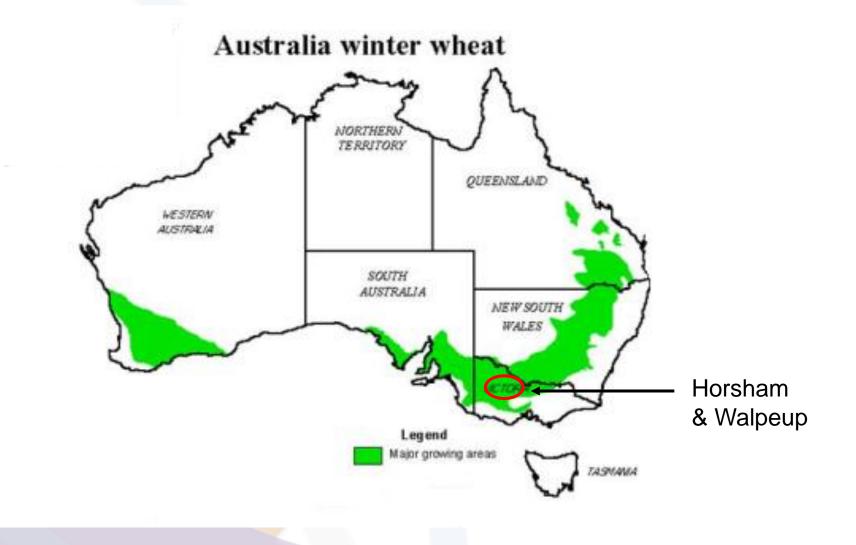
2005

2006

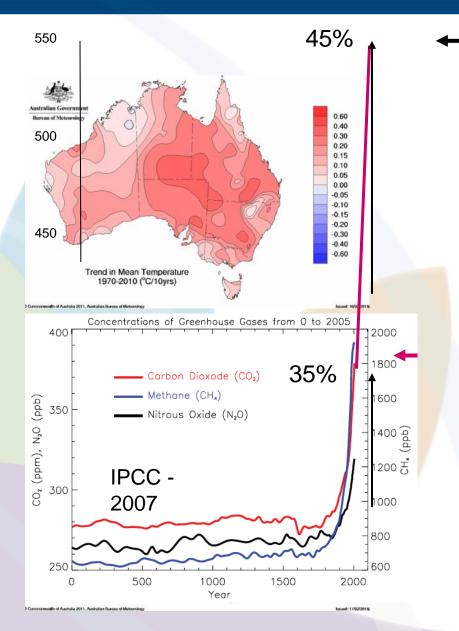
Reports – Laying the groundwork

- From Steffen and Canadell, 2005:
- Additional experimental work on the effects of elevated CO₂ on Australian plant-based systems –
 (1) in situ wheat crops using standard management regimes of

(1) in situ wheat crops using standard management regimes of the semi-arid Australian wheat belt, and
(2) whole tree studies in water-limited systems;


- Studies of multiple interacting factors on terrestrial production systems;
- Analysis of interactive effects of elevated CO₂ and extreme climate events (eg, drought);
- Adaptability of Australian terrestrial production systems;
- Pest and disease dynamics

Reports – Laying the groundwork


- From Canadell, 2006 (original research questions):
- Will elevated CO₂ concentrations partially alleviate water stress and the effects of increased climate variability in a future warmer climate?
- Will higher yields in a rich-CO₂ world come at a financial cost?
 (e.g. need for larger nitrogen additions to maintain grain protein content)
- Are there significant differences in the CO₂ responses from different genotypes that could be utilised to maximise productivity?

What are the combinations of management techniques and germplasm across environments that will ensure sustainable production in the Australian grains industry in the future?

Australian Wheat Belt

A Changing Environment

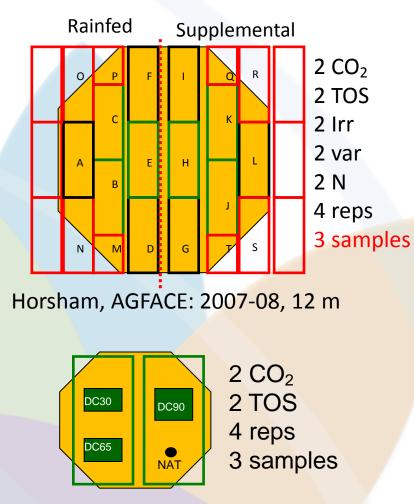
- Atmospheric CO₂ levels are rising (1860 ~280 ppm, 2012 ~ 385 ppm, 2050 = 550 ppm, ~2.5 ppm pa)
- Plant growth, yield and water use efficiency increase within this range of CO₂ (non-limiting factors)
- Temperature increasing and rainfall decreasing
- Extreme events predicted to become more frequent

What will be the effects of eCO₂ (and climate change) on Australian grains and ...

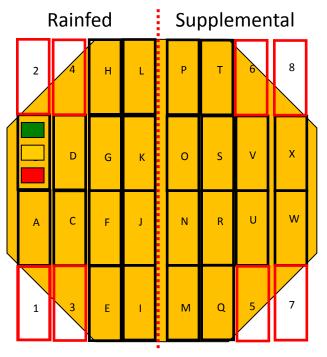
How can we adapt?

Techniques to Study eCO₂

- Glasshouses
- Open topped chambers
- Gradient tunnels
- Enclosed Chambers
- Free Air CO₂ Enrichment (FACE)

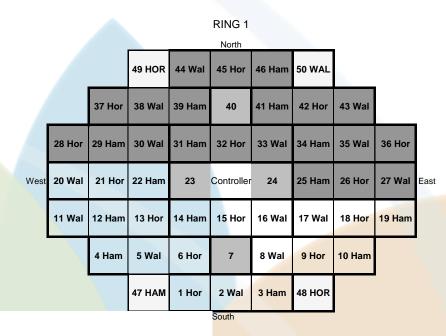

FACE provides the most realistic assessment of elevated CO₂ on plant/crop responses because plants are not enclosed and can study whole system.

AGFACE Rings



- 16 m ring, Horsham
- 4 m ring, Walpeup
- Aerial view, Horsham

AGFACE Design



Walpeup: 2008-09, 4 m

Horsham, AGFACE: 2009-13, 16 m

SoilFACE

SoilFACE designed to understand soil nutrient supply and dynamics.

1) eCO₂ impacts on root ability to access nutrients and water

2) Soil type effects on nutrient supply

3) eCO₂ effects on N, P and C dynamics (incl. N fixation)

AGFACE 2014 +

Test:

eCO₂

1) root, protein

2) BYDV & aphid

3) Heat shocks,

4) Multigeneration

responses;

quality, NUE traits;

R1 R2 Q2 Q1 5 8 11 14 N1 W1 2 16 H22 P2 P1 H21 4 7 10 13 N2 W2 H12 H11 V G 6 9

TraitFACE

Example

eCO₂ X Wheat

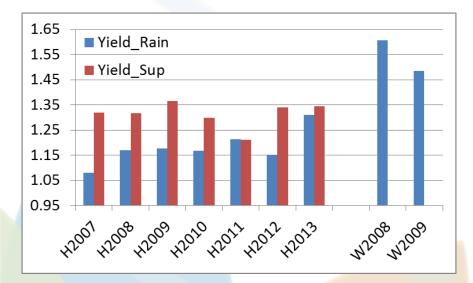
12m ring

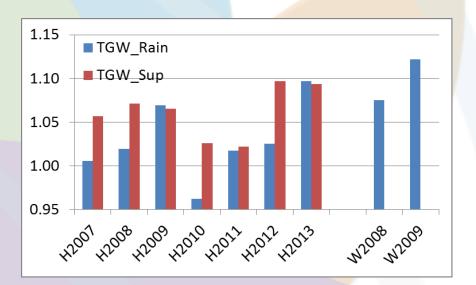
Treatments

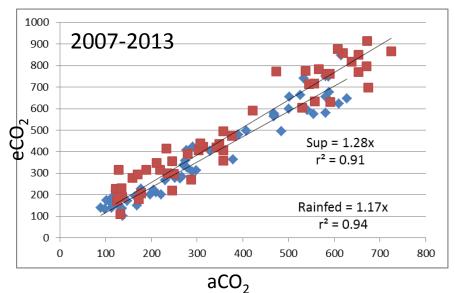
Roots (R) – Scout, Yitpi Quality (Q) – RS4 11-1, RS4 11-5 Wet – Scout, Yitpi Nitrogen Use Efficiency (N) – Gladius, Wyalkatchem Heat Shock (H) – Scout, Yitpi Pests (P) Multiple varieties (V) Generational response (G)

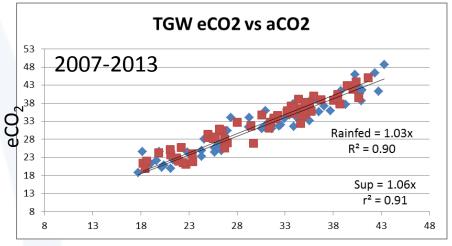
1) Can we reduce/ reverse the reduction in grain protein through genetics or management?

2) Impact of eCO₂ on water and N resource use?

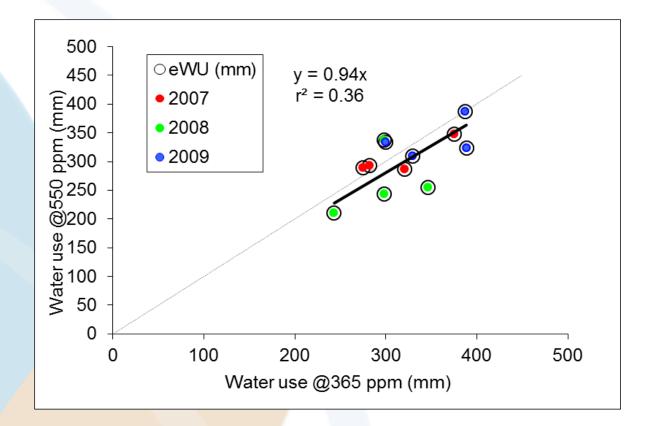

Yield variability – wheat

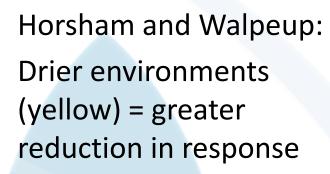

Cultivar	% increase						
	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>
Yitpi, N0	18	20	35	44	3	19	27
Janz	19	31	35	9	16	29	
Drysdale			20	32			
Gladius			22				
H45			26	23	28		
Hartog			0	14			
Zebu			38	21			
Silverstar			37	23	34	25	
SSR T65 hi					32	25	
SB003 low					12	31	
SB062 hi					29	25	
Impala							35
Bolac							35
Scout							33
Rosella							47
Spitfire							21
Mean	19	24	27	23	21	26	33

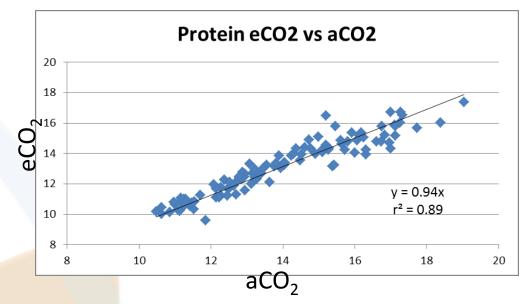

Yield variability – field pea

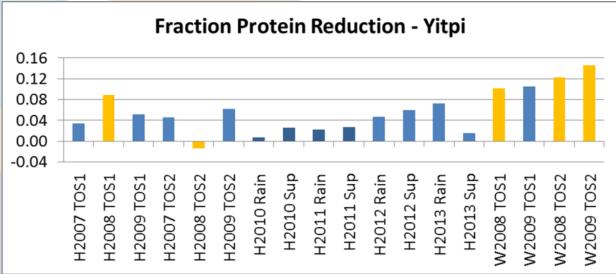

Pea cultivar	% increase				
	2010	2011	2012		
Bohatyr		2	55		
Kaspa	18	37	49		
OZP0902	50	9	36		
Twilight	33	0	29		
Sturt	19	25	31		
Mean	27	14	40		

Responsiveness to eCO₂ by H₂O trmt

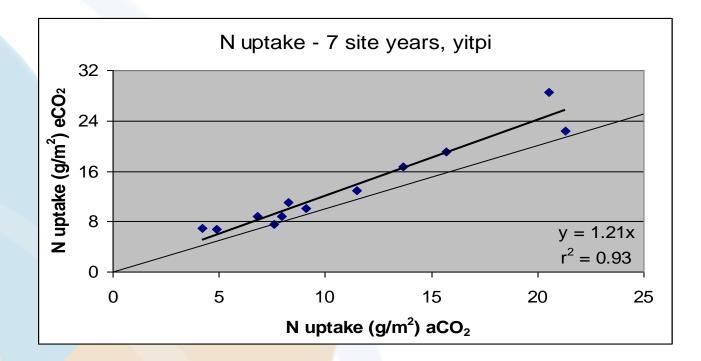



aCO₂


Water Use – aCO₂ vs eCO₂



Water use (mm) Horsham 2007-09


Protein – Reduction across environments

Plant N uptake

Horsham and Walpeup 2007-11

What Have We Learned?

Under eCO_2 :

- Yield response is highly variable by environment and cultivar but may be controlled by water
- Protein concentration may be reduced more under eCO₂ in dry conditions and varies by cultivar
- Bread quality reduced but differs by cultivar
- BYDV effects will increase
- Many micronutrients (eg Fe, Zn) reduced in grain
- More N available from legume stubble but no increase in rhizobium activity
- Traits (TUE, restricted tillering) remain effective in eCO₂
- Most major models can simulate yield response
- Few interactions of other factors with CO₂ (eg, H₂O, TOS)
- Hayoff may be problem in very "dry finish" years

Issues not considered in 2005

- Does eCO₂ increase NOx emissions?
- Physiochemical soil constraints X eCO₂
- Grain end-product quality (e.g., bread)
- Soil type
- C sequestration
- Trait testing to inform adaptation
- Crops other than wheat

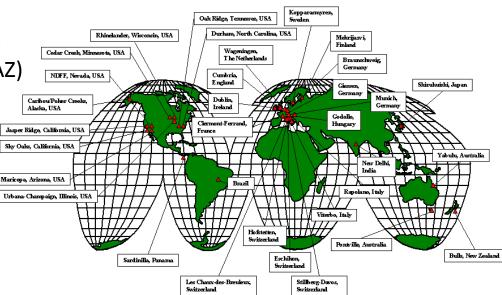
Issues that still require study

- Progressive N limitation
- Pathogenicity of certain pests/diseases
- P interactions with N
- Interaction of warming X CO₂ X water X soil N
- Yield response thresholds due to very low water availability on different soils
- Genotype selection for CO₂ response
- Soil biological changes
- Heat shocks X CO₂ and grain yield/quality
- N management to reverse protein reductions

Have we answered these questions?

- From Canadell, 2006 (original research questions):
- Will elevated CO₂ concentrations partially alleviate water stress and the effects of increased climate variability in a future warmer climate?
 - **Probably** depends on timing of rain events (and soil type)
- Will higher yields in a rich-CO₂ world come at a financial cost? (eg need for larger nitrogen additions to maintain grain protein)
 - Probably more cost to N inputs, breeding to maintain grain protein and unclear whether N fertilisers can alter protein
- Are there significant differences in the CO₂ responses from different genotypes that could be utilised to maximise productivity?
 - Yes, and this is a primary road to adaptation

Workshop – 5 themes


- Trait selection
 - Greg Rebetzke (CSIRO)
 - Fernanda Dreccer (CSIRO)
 - Sabine Tausz Posch (UM)
- Grain Quality
 - Colin Wrigley (UQ)
 - Russel Eastwood (AGT)
 - Joe Panozzo (DEPI)
- Pests & Diseases
 - Rebecca Ford (UM)
 - Jo Luck (Plant Biosec CRC)
 - Piotr Trebicki (DEPI)

- Belowground & N
 - Zed Rengel (UWA)
 - Jairo Palta (CSIRO)
 - Roger Armstrong (DEPI)
- Modelling
 - Scott Chapman(CSIRO)
 - David Lobell (Stanford)
 - Garry O'Leary (DEPI)

Collaborators

Collaborating scientists

- Sam Myers, Harvard University
- Lisa Ainsworth, Univ Illinois (SoyFACE)
- Andrew Leakey, Univ Illinois (SoyFACE)
- Bruce Kimball, USDA-ARS (Maricopa, AZ)
- Rebecca Ford, UM
- Heinz Rennenberg, Univ Freiburg
- Cynthia Rosenzweig, NASA
- Ros Gleadow, Monash Univ
- Karen Garrett, Kansas State Univ
- Julie Nicol, CIMMYT
- Nilsa Bosque Perez, Univ Idaho
- Malcolm Hawkesford (Rothamsted Research)
- Senthold Asseng, Univ Florida
- Neil Huth, CSIRO Toowoomba
- Hamish Brown, Plant & Food Research, NZ
- Carolyn Maelstrom, Michigan State Univ

- Luit De Kok (Univ Groningen)
- Scott Chapman, CSIRO
- Jairo Palta, CSIRO
- Robert Norton, IPNI

AGFACE team

- Michael Tausz, UM
- Joe Panozzo, DEPI
- Cassandra Walker, DEPI
- Nathan Neumann, DEPI
- Garry O'Leary, DEPI
- James Nuttall, DEPI
- Sabine Posch, UM
- Roger Armstrong, DEPI
- Mahabubur Mollah, DEPI
- Piotr Trebicki, DEPI
- Friday Obanor, CSIRO
- Raymond Lam, UM
- Clayton Butterly, La Trobe
- Caixian Tang, La Trobe
- Chris Korte, DEPI
- Debra Partington, DEPI
- Simone Dalton, DEPI
- Alan Yen, DEPI
- Narelle Nancarrow, DEPI

- Maryse Bourgault, UM
- Markus Loew, UM
- Helale Bahrami, UM
- Alireza Houshmandfar, UM
- Allene Macabuhay, UM
- Rebecca Vandegeer, UM
- Pramesha Madurangi, UM
- Paul Melloy, CSIRO
- Russel Argall, DEPI
- Peter Howie, UM
- Ash Purdue, DEPI
- Jason Ellifson, DEPI
- Simone Vassiliadis, DEPI
- Members at large: Rob Norton, UM (IPNI), David McNeil, DEPI (Univ Tas); Jo Luck, DEPI; Saman Seneweera, UM (USQ); Mark Nicolas, UM; Jason Brand, DEPI; Sukumar Chakraborty, CSIRO; Angela Freeman, DEPI; Grant Halloway, DEPI; Janine Fitzpatrick, DEPI; Justine Ellis, DEPI, Jennifer Briggs, DEPI; Nimesha Fernando, Humaira Sultana, UM; Chamindathee L Thilakarathne, UM; Jian Jin, La Trobe; Kyla Finlay, DEPI

More information

www.piccc.org.au/agface

AGFACE partners and supporters

Department of Environment and Primary Industries

Primary Industries Climate Challenges Centre

Australian Government Department of Agriculture

Australian Research Council

AGFACE is a collaborative research program led by the Department of Environment and Primary Industries Victoria and the University of Melbourne, with core funding support from the Grains Research and Development Corporation and the Australian Government Department of Agriculture.