Crop Responses to Elevated CO₂ and Interactions with H₂O, N, and Temperature

Bruce A. Kimball

by

U.S. Arid-Land Agricultural Research Center, USDA-ARS, Maricopa, AZ

Tomatoes Grown with CO₂-Enrichment ca. 1978

Kimball (1983) was the first assemblage and analysis of prior observations of effects of CO₂enrichment on yield. Mean yield increase was 33%.

Mauna Loa Data (Keeling) from Scripps CO₂ Program

Monthly Carbon Dioxide Concentration

parts per million

Roger Gifford from CSIRO Started Studying Effects of Elevated CO₂ on Wheat in the 1970s Using Open-Top Chambers

- Gifford, R.M. 1977. Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differing photosynthetic environments. Aust. J. Plant Physiol. 4:99-110.
- Gifford, R.M. 1979. Growth and yield of CO₂enriched wheat under water-limited conditions. Aust. J. Plant Physiol. 6:367-378.

U.S. Dept. of Energy "Responses of Vegetation to Carbon Dioxide"

- Starting in about 1980, Funding of open-top and controlled-environment chamber experiments in Raleigh (Rogers), Gainsville (Allen), Starkville (Baker), Phoenix (Kimball), and others
- Rising Atmospheric Carbon Dioxide and Plant Productivity: An International Conference," Athens, GA, 23-28 May 1982

Raleigh, NC; Rogers et al., 1982

Gainesville, FL; Allen et al., 1982

Starkville, MS;Baker et al., 1986

Open-Top CO₂-Enrichment Chambers (Cotton; Phoenix, Arizona; 1983-1987)

Differences Between the Environments inside Open-top Chambers and Outside

- Solar radiation reduced 0.7 to 1.0 of outside depending on sun angle and construction (especially presence of frustum or roof)
- Thermal radiation regime changed, higher especially at night
- Air movement drastically altered typically much less in daytime and higher at night
- Inside air and foliage temperatures typically increased 0.5 to 2.5 °C
- Inside humidities increased and transpiration inside reduced 0.7-0.9 of that outside

Reasons to Prefer Free-Air CO₂ Enrichment (FACE) Approach

- Realism for both absolute and relative responses
- Large plot size enables:
 - Many cooperators to make many complimentary measurements on the same plant material
 - Highest quality seasonal data
 - Weekly or more often destructive harvests
 - Not continually touched by human hands
 - Ideal for plant growth model validation
 - An economy of scale, such that FACE is least expensive per unit of high-CO₂-grown plant material

History of Arizona FACE Project

Cotton (C ₃ woody perennial)	
1989	FACE
1990 & 1991	FACE x H ₂ O

Wheat (C_3 grass) 1992-93 & 1993-94 FACE x H₂O 1995-96 & 1996-97 FACE x N

Sorghum (C₄ grass) 1998 & 1999

FACE x H₂O

History of Swiss FACE Project

- FACE x N x species x cutting frequency
- Species
 - ryegrass (C₃ grass)
 - white clover (C_3 legume)
 - (mixture)
- 1993-2002

History of Italian FACE Projects

 Grape (C₃ woody perennial)
 – 1994, 5, 6, 7

- Potato (C₃ forb with tuber storage)
 - 1995
 - CHIP
 - 1998
 - 1999

History of Japanese FACE Project

 Rice (C₃ grass)

 1998-2000; 2007-2008, 2010)
 FACE x N; varieties

History of SoyFACE Project

- Soybean
 - 2001 CO₂
 - 2002 CO₂, O₃
 - 2003-2007 CO₂, O₃, CO₂+O₃
 - $-2008 \text{ CO}_2, \text{ O}_3, \text{ CO}_2+\text{O}_3, \text{H}_2\text{O}$
 - 2009-2013 CO_2 , O_3 , CO_2+O_3 , H_2O , Infrared Warming
- Corn
 - 2002 CO₂
 - -2004 CO_2
 - 2006 CO₂
 - 2008 CO₂
 - 2010 CO₂, Warming
 - 2012 CO₂, Warming

History of Braunschweig, Germany FACE Project

Oct 1999 – Jun 2000 Barley Aug 2000 – Oct 2000 Grass Apr 2000 – Sep 2000 Sugar Beet Oct 2001 – Jul 2002 Wheat Sep 2002 – Jun 2003 Barley Aug 2003 – Oct 2003 Grass Apr 2004 – Sep 2004 Sugar Beet Oct 2004 – Jul 2005 Wheat May 2007 – Oct 2007 Corn May 2008 – Oct 2008 Corn

History of Chinese FACE Project

- Rice (C₃ grass)

 2001, 2002, 2003, 2004; FACE x N
 - 2004, 2005,
 2006; FACE x
 hybrid
 varieties x N
- Wheat
 - 2001-92; FACE x N

History of AGFACE (Australian Grains) Project

2007-2009 Wheat, $CO_2 x$ sowing date 2007-2008 Wheat, $CO_2 x H_2O x N$ 2009 Wheat, 8 varieties 2010 Wheat & field pea rotation with 6 varieties of each

Effects of:

CO₂ Alone

Light-Saturated Net Photosynthesis Response to Elevated CO₂ for Various Plant Classifications

[+200 ppm via FACE; from Ainsworth and Rogers (2007)]

Stomatal Conductance Response to Elevated CO₂ for Various Plant Classifications (+200 ppm via FACE)

[from Ainsworth and Rogers (2007)]

Yield Response Ratios of Wheat vs. CO_2 Concentration (from Tubiello *et al.*, 2007)

Wheat Responses to Elevated CO₂ Sorted by Exposure Method (from Wang et al., 2013)

Effects of:

CO₂ and Water (Drought)

Difference in λET of Soybean at Elevated and Ambient Through a Drying Cycle in SoyFACE [(from Bernacchi *et al.* (2007)]

Day of Year

Evapotranspiration (updated from Kimball, 2011)

Canopy Temperature (updated from Kimball, 2011)

Above-Ground Biomass Accumulation (updated from Kimball, 2011)

Agricultural Yields (updated from Kimball, 2011)

Effects of:

Temperature Alone

Typical Temperature Response Curve

Hexagonal 3-m-Diameter Array of Mor FTE 1000W Infrared Heaters Deployed Over Wheat at Maricopa, AZ on 24 November 2007.

Hot Serial Cereal Experiment, Maricopa, AZ; 10Mar2009 ("Cereal" because it's on wheat, "Serial" because the wheat was planted serially every 6 weeks for 2 years (four of the planting dates are indicated on the photo), "Hot" because infrared heaters were deployed on some of the planting dates)

Photo taken 10 January 2008 shows heaters saved wheat plot from frost that occurred on 29 December 2007 in Hot Serial Cereal Experiment, Maricopa, Arizona

Winter-planted: highest yields – no effect of heaters Spring-planted: yields reduced – heaters exacerbate problem Fall-planted: frost damage! – heaters ameliorate problem

Summer-planted: crop failure

Grain Yield versus Average Air Temperature for Growing Season From Hot Serial Cereal Experiment

Effects of:

CO₂ & Temperature

Predicted Response of Light-Saturated Net Photosynthesis to Temperature and CO₂ [from Long (1991)]

■

Increases in Growth and CER Due to Elevated CO₂ Versus Air Temperature From Idso and Idso (1994)]

Grain Yields of Soybean and **Rice at 330 and** 660 ppm CO_2 versus Mean Air **Temperature** [from Baker et al. (1989; 1993)]

Effects of Elevated CO₂ and Warming in Tunnels on Two Varieties of Wheat (from Dias de Oliveira *et al.*, 2013)

Carl Bernacchi in SoyFACE Project, Urbana, IL with 3m Array of Four-Element Mor Heaters and Dummy Array in Back; 20 August 2009

Soybean Biomass, Grain Yield, and Harvest Index from SoyFACE in 2008 and 2011 for Control, +3.5°C, 550 ppm CO₂, and +T+CO₂ (from Ruiz-Vera et al., 2013)

Prairie Heating and CO₂ Enrichment (PHACE) Cheyenne, Wyoming, USA

TREATMENTS:

CO₂: ambient (385) and 600 ppm TEMP: ambient and +1.5/3.0 C day/night IRRIG: frequent small additions and 2 large additions 5 reps: 30 experimental plots

RESULTS:

- Elevated CO₂ favored C₃ grasses
- Warming favored C₄ grasses
- Combination of elevated CO₂ & warming favored C₄ grasses

CONCLUSIONS:

- C₄ grasses may become more competitive
- Productivity may be higher in a warmer, CO₂- enriched world.

Morgan et al. (2011; Nature)

Elevated-CO₂-caused increases in canopy resistance and increased temperature act in opposite directions on evapotranspiration

Morgan et al. (2011; Nature)

Conclusions

- Elevated CO₂ alone:
 - Elevated CO₂ increased photosynthesis, biomass, and yield in all C₃ species, an average 21% for shoot biomass for enrichment to 550 μ mol mol⁻¹, but less in C₄.
 - Elevated CO₂ generally also decreased stomatal conductance, and transpiration per leaf area while increasing soil water content, canopy temperatures, and water use efficiency in all plants.
 - Root biomass was generally stimulated more than shoot biomass
 - Woody perennials had large growth stimulations, while reductions in stomatal conductance were smaller
 - N concentrations went down while carbohydrate and other carbon-based compounds went up, with leaves affected more than other organ

Conclusions - continued

- Elevated CO_2 when H_2O is limited:
 - Growth stimulations are as large or larger under waterstressed compared to well-watered conditions.
 - Degree of CO₂ growth stimulation greatly dependent on dynamics of drought cycles. Reduction of ET following rain or irrigation event enables CO₂enriched crop to sustain photosynthesis and growth more days into a growth cycle.
 - Once stomates close due to water stress, elevated CO₂ no longer effective.

Conclusions - continued

- Elevated temperature alone:
 - Increases growth and yield when normal temperature is below optimum for particular plant. If warmer temperature prevents frost damage, positive response can be dramatic.
 - Decreases growth and yield when normal temperature is above optimum for particular plant. If warmer temperature damages pollen and seed-set, negative response can be dramatic.
 - Accelerates plant development time. For determinant cereal crops like wheat, shortened grain-filling period can decrease yield.

Conclusions - continued

- Elevated CO₂ and elevated Temperature:
 - The temperature optimum for photosynthesis shifts to higher temperatures at elevated CO₂.
 - During the vegetative stage of plant growth and below the temperature optimum, the interaction appears mostly strong and positive.
 - Above the temperature optimum, partial stomatal closure and associated canopy temperature rise can exacerbate crop damage, especially with regard to seed-set issues.
 - At the same time, higher photosynthetic rates at elevated CO₂ enable plants to better withstand damaging high temperatures, sometimes at least, even enabling survival while ambient-CO₂ plants die.

The End Thank You for Your Attention

