

Trait genetic architecture - the challenge and reward in careful phenotyping of complex traits

CSIRO PLANT INDUSTRY www.csiro.au

CSIRO

The connect and disconnect with delivery

Early leaf area and water use?

rapid early growth

slow early growth

Genetic complexity - an example with early vigour - Partitioning of water use (a)

Esperance 2001, 380 mm in-crop rainfall

Fertility treatment	LAI (lai.days)	Yield (t/ha)	Water use (mm)	Evaporation (mm)	Transpiration (mm)
High 63N, 20P	3.1	5.6	366	173	193
Low 8N, 10P	1.4	2.8	363	259	104

(David Hall, DAFWA)

Genetic complexity - an example with early vigour - Partitioning of water use (b)

Merredin 2003, 196 mm in-crop rainfall

Fertility treatment	LAI (lai.days)	Yield (t/ha)	Water use (mm)
High 36 N, 8 P	138	3.2	259
Low nil	58	1.6	251

(David Hall, DAFWA)

Which traits where? Quality phenotyping – controlled field environments (Managed Environment Facilities – 'MEF')

Which traits where? Overall and regional trait value

Trait value = Grain yield (% change) across 18 site x years using the MEF

Increased early vigour increases yield and also improved weed competitiveness, and nutrient use efficiency

- Vigour

+ Vigour

(Gill and Rebetzke)

Traits - Regeneration of high vigour-selected wheats after simulated dry sowing

(Palta et al.)

- W011206

W260310

51

Global Survey for Early Vigour

Entry	Mean leaf width (mm)	Leaf area (cm²)	
Jing Hong (China)	6.3	14.3	
Kharchia (India)	6.2	14.2	
V743/Oligo (Israel)	5.9 / 6.3	11.1 / 14.6	
Glenlea/Roblin (Canada)	5.7 / 5.8	12.0 / 12.2	
CC-CIMMYT (Mexico)	5.6	13.9	
Janz (Australia)	4.5	7.4	

Where available, pedigrees indicate coancestry among lines is low

Recurrent selection for genetic gain (accumulating favourable additive genetic effects)

Genetic covariances and variances

Cov (a,e) =
$$2\theta_{ae}\sigma_{A}^{2} + 2\delta_{\ddot{a}+\ddot{e}}\sigma_{D}^{2} + (2\gamma_{\ddot{a}e} + 2\gamma_{a\ddot{e}})D_{1} + \delta_{\ddot{a}\ddot{e}}D_{2}$$

Var (S₀ families) =
$$\sigma^2_A + \sigma^2_D$$

Var (
$$S_{0:1}$$
 families) = $\sigma_A^2 + 0.25 \sigma_D^2 + 1 D_1 + 0.125 D_2$

Var (
$$S_{1:2}$$
 families) = 1.5 σ_A^2 + 0.125 σ_D^2 + 2.5 D_1 + 0.563 D_2

Var (
$$S_{\infty}$$
 families) = $2 \sigma_{A}^{2} + 0 \sigma_{D}^{2} + 4 D_{1} + D_{2}$

Where σ_A^2 are σ_D^2 are the additive and dominance genetic variances, D_1 is the covariance of an additive effect of an allele with its dominance deviation and D_2 is the variance of homozygous dominance effects

Genotypic variation and covariation for early vigour

Parameter	h²	r _{a_LFA}	RSG_LFA (%)
Mean leaf width	0.84 ± 0.11**	0.57 ± 0.10**	92
Mean leaf length	0.67 ± 0.16**	0.43 ± 0.09**	64
Number of leaves	0.39 ± 0.11**	-0.37 ± 0.16**	-10

⁺ Based on F_{2:4} - F_{2:6} parent-offspring covariance

Culling from 6000+ S0:1 to replicated testing of S1:2 progeny-testing

High vigour germplasm with greater leaf area

cv. Annuello

Vigour 18

Cycle 4 selection

Relationship between cycle number and mean leaf width measured in four environments: Sow 1 (○), Sow 2 (●), Sow 3 (■), and the reduced N Sow 4 (▲)

Correlated changes with selection for increased vigour -

The massive and complex wheat genome

Phenotyping: Population type - the MAGIC design

 G_0

G₁

 G_2

 G_3

Single seed descent to F6

4 Founders

70 independent intercrosses

850 F1-like plants

1580 F2-like plants

1580 different mosaics of the parental genomes

(Cavanagh et al.)

Genetic dissection of early growth[†]

Integration of multi-population, multi-environment mapping

(4-way MAGIC = Baxter/Chara/Westonia/Yitpi)

† QTL at two air temperatures

Genetic dissection of early growth[†]

Integration of multi-population, multi-environment mapping

(4-way MAGIC = Baxter/Chara/Westonia/Yitpi)

† QTL at two air temperatures

Estimation of cover: NIR image extracted from 10 minute flight plan (20m altitude)

Estimation of cover: image straightened, lens corrected, partitioned into plots, trimmed

Comparison of cover in 4 treatments of density by genotype (isolines for *tin* gene)

Image taken at 6 weeks after planting

Gives estimate for entire plot (12 m²) cf. ground-level estimate of < 0.5 m²

(Chapman, Chan, Jackway)

Getting close to delivery....

Getting close to delivery....

Thank you!

Relationship between cycle number and total leaf area measured in four environments: Sow 1 (○), Sow 2 (●), Sow 3 (■), and the reduced N Sow 4 (▲)

Remember to thank the organisers

