Trait genetic architecture - the challenge and reward in careful phenotyping of complex traits CSIRO PLANT INDUSTRY www.csiro.au CSIRO #### The connect and disconnect with delivery #### Early leaf area and water use? rapid early growth slow early growth ### Genetic complexity - an example with early vigour - Partitioning of water use (a) Esperance 2001, 380 mm in-crop rainfall | Fertility
treatment | LAI
(lai.days) | Yield
(t/ha) | Water use (mm) | Evaporation (mm) | Transpiration (mm) | |------------------------|-------------------|-----------------|----------------|------------------|--------------------| | High
63N, 20P | 3.1 | 5.6 | 366 | 173 | 193 | | Low
8N, 10P | 1.4 | 2.8 | 363 | 259 | 104 | (David Hall, DAFWA) ### Genetic complexity - an example with early vigour - Partitioning of water use (b) Merredin 2003, 196 mm in-crop rainfall | Fertility
treatment | LAI
(lai.days) | Yield
(t/ha) | Water use
(mm) | |------------------------|-------------------|-----------------|-------------------| | High
36 N, 8 P | 138 | 3.2 | 259 | | Low
nil | 58 | 1.6 | 251 | (David Hall, DAFWA) ### Which traits where? Quality phenotyping – controlled field environments (Managed Environment Facilities – 'MEF') # Which traits where? Overall and regional trait value Trait value = Grain yield (% change) across 18 site x years using the MEF ### Increased early vigour increases yield and also improved weed competitiveness, and nutrient use efficiency - Vigour + Vigour (Gill and Rebetzke) ## Traits - Regeneration of high vigour-selected wheats after simulated dry sowing (Palta et al.) - W011206 W260310 51 #### **Global Survey for Early Vigour** | Entry | Mean leaf width (mm) | Leaf area
(cm²) | | |----------------------------|----------------------|--------------------|--| | Jing Hong
(China) | 6.3 | 14.3 | | | Kharchia
(India) | 6.2 | 14.2 | | | V743/Oligo
(Israel) | 5.9 / 6.3 | 11.1 / 14.6 | | | Glenlea/Roblin
(Canada) | 5.7 / 5.8 | 12.0 / 12.2 | | | CC-CIMMYT
(Mexico) | 5.6 | 13.9 | | | Janz
(Australia) | 4.5 | 7.4 | | Where available, pedigrees indicate coancestry among lines is low ### Recurrent selection for genetic gain (accumulating favourable additive genetic effects) #### **Genetic covariances and variances** Cov (a,e) = $$2\theta_{ae}\sigma_{A}^{2} + 2\delta_{\ddot{a}+\ddot{e}}\sigma_{D}^{2} + (2\gamma_{\ddot{a}e} + 2\gamma_{a\ddot{e}})D_{1} + \delta_{\ddot{a}\ddot{e}}D_{2}$$ Var (S₀ families) = $$\sigma^2_A + \sigma^2_D$$ Var ($$S_{0:1}$$ families) = $\sigma_A^2 + 0.25 \sigma_D^2 + 1 D_1 + 0.125 D_2$ Var ($$S_{1:2}$$ families) = 1.5 σ_A^2 + 0.125 σ_D^2 + 2.5 D_1 + 0.563 D_2 Var ($$S_{\infty}$$ families) = $2 \sigma_{A}^{2} + 0 \sigma_{D}^{2} + 4 D_{1} + D_{2}$ Where σ_A^2 are σ_D^2 are the additive and dominance genetic variances, D_1 is the covariance of an additive effect of an allele with its dominance deviation and D_2 is the variance of homozygous dominance effects #### Genotypic variation and covariation for early vigour | Parameter | h² | r _{a_LFA} | RSG_LFA
(%) | |---------------------|---------------|--------------------|----------------| | Mean leaf
width | 0.84 ± 0.11** | 0.57 ± 0.10** | 92 | | Mean leaf
length | 0.67 ± 0.16** | 0.43 ± 0.09** | 64 | | Number of leaves | 0.39 ± 0.11** | -0.37 ± 0.16** | -10 | ⁺ Based on F_{2:4} - F_{2:6} parent-offspring covariance ## Culling from 6000+ S0:1 to replicated testing of S1:2 progeny-testing # High vigour germplasm with greater leaf area cv. Annuello Vigour 18 Cycle 4 selection Relationship between cycle number and mean leaf width measured in four environments: Sow 1 (○), Sow 2 (●), Sow 3 (■), and the reduced N Sow 4 (▲) #### Correlated changes with selection for increased vigour - #### The massive and complex wheat genome #### Phenotyping: Population type - the MAGIC design G_0 G₁ G_2 G_3 Single seed descent to F6 4 Founders 70 independent intercrosses 850 F1-like plants 1580 F2-like plants 1580 different mosaics of the parental genomes (Cavanagh et al.) ### Genetic dissection of early growth[†] Integration of multi-population, multi-environment mapping (4-way MAGIC = Baxter/Chara/Westonia/Yitpi) † QTL at two air temperatures ### Genetic dissection of early growth[†] Integration of multi-population, multi-environment mapping (4-way MAGIC = Baxter/Chara/Westonia/Yitpi) † QTL at two air temperatures Estimation of cover: NIR image extracted from 10 minute flight plan (20m altitude) ## Estimation of cover: image straightened, lens corrected, partitioned into plots, trimmed Comparison of cover in 4 treatments of density by genotype (isolines for *tin* gene) Image taken at 6 weeks after planting Gives estimate for entire plot (12 m²) cf. ground-level estimate of < 0.5 m² (Chapman, Chan, Jackway) ### Getting close to delivery.... Getting close to delivery.... ### Thank you! Relationship between cycle number and total leaf area measured in four environments: Sow 1 (○), Sow 2 (●), Sow 3 (■), and the reduced N Sow 4 (▲) ### Remember to thank the organisers