Sustainable intensification of grains in SE Australia

Roger Armstrong Garry O'Leary Chris Sounness (BCG) Sabine Tausz-Posch

The Primary Industries Climate Challenges Centre is a joint venture between the University of Melbourne and the Victorian Department of Environment and Primary Industries

Department of Environment and Primary Industries

Global wheat production

FAO: Projected world wheat demand 2050

Fischer et al. 2014:

* approximately same increase as in the past (~1% p.a.)

Source: FAOSTAT 2014

= ~ 40% increase from current

= ~ 1% per year*

Wheat production - Australia

Growth from current to 2050: approximately 1% per annum Previous growth: approximately 1% per annum

Source: FAOSTAT 2014

piccc

Productivity gains

Where does the 1% per annum increase come from?

A combination of:

<mark>G x</mark> E x M

= Genetics x Environment x Management

Water

Sources: French and Schultz 1984, Sadras and Angus 2006

South-eastern Australia: 9.8 kg grain ha⁻¹ mm⁻¹

Can we use genetics and management to reducing this gap?
 Which traits would we need to target?

Roots:

CSIRO PUBLISHING www.publish.csiro.au/journals/ajar

piccc

Australian Journal of Agricultural Research, 2007, 58, 303-315

Impact of subsoil water use on wheat yield

J. A. Kirkegaard^{A,B}, J. M. Lilley^A, G. N. Howe^A, and J. M. Grah

- 10.5mm of additional subsoil water used after anthesis
- □ Increased grain yield by 0.62 t/ha
- Water-use efficiency up to 3 times greater
- =relatively small amounts of subsoil water can be highly valuable to grain yield

Source: Bahrami et al.

Water

High-vigour:

- Fast-growing
- Evaporation reduced
- Weeds outcompeted

Botwright et al. 2002

Location	Vigour class	Leaf area index 50 DAS ^a	Anthesis biomass (g m ⁻²)	Final biomass (g m ⁻²)	Grain yield (g m ⁻²)
Wongan	High vigour	0.37	453	678	337
Hills ⁶	Low vigour	0.32* ^c	405*	573**	293***
Merredin ^b	High vigour	0.39	511	634	266
	Low vigour	0.30**	527n.s.	574**	247**

Water

2. Trait: IMPROVING TRANSPIRATION EFFICIENCY

 Acquiring more biomass (carbon) in exchange for the water transpired by the crop
 E.g. stomatal behaviour

Source: Rebetzke et al. 2009

Nutrients

Fig. 1. Fertiliser used in Australia during the period 1960–2002.

Optimising fertiliser use through: assimila
Best agronomic management
Improved germplasm for greater efficiency

<u> 1960 – 2000, Australia:</u>

- ❑ N fertiliser use has increased from ~35 Gg to ~1000 Gg
- Most of this N is used for growing cereals
- Efficiency is low: for example in wheat only about 40% of the N was assimilated

Source: Chen et al. 2008

piccc

Nutrients

UTILISATION EFFICIENCY:
Maximise leaf photosynthetic capacity per unit N
Increase radiation interception per unit nutrient uptake
Optimise N remobilisation (e.g. 69% of the N in heads from remobilisation Palta and Fillery 1993)

UPTAKE EFFICIENCY:

□ Vigorous root systems capture N early when most vulnerable to loss (Palta and Watt 2009)

Deeper roots to retrieve leached NO₃

Source: Hawkesford 2012

Climate change

How will future climates impact on future grain production in Victoria and southern Australia?

- Warmer temperatures, greater evaporation
- More extreme events
- Changed rainfall patterns
- Increased atmospheric CO₂ concentrations

Threats and some opportunities

	% Change Selected AGFACE data	% Change International comparison
Biomass	~18% (Tausz-Posch et al. Field Crops Research 2012)	~20% (Ainsworth and Long New Phytol 2005)
Yield	~18% (Tausz-Posch et al. Field Crops Research 2012)	~17% (Ainsworth and Long New Phytol 2005)

Climate Change

Source: Rebetzke et al. 2009

Source: Tausz-Posch et al. 2012

 \succ Choosing traits with the greatest CO₂ responsiveness

Genetic gain under drought will benefit from multidisciplinary skills such as, for example:

- Rapid cost-efficient phenotyping
- Improved physiological understanding
- Molecular techniques aimed at more efficient screening
- Use of simulation models

Wheat yield Prediction under future climates

CSIRO A1Fi CCAM Mark 3 present-day long-season cv. Includes eCO₂, temperature, soil type

- Landscape "clumpiness" due to soil type by rainfall interactions
- Southern region (HRZ dark blue) yields still increasing in 2070

O'Leary et al., 2011

Nitrogen supply in future climates

Increased amount of N fixed by pulses (but % Ndfa unchanged)

CO ₂	Dry matter	N uptake	Ndfa	N fixed
treatment	(g/core)	(g/core)	(%)	(g/core)
		(i) Walpeup		
Ambient	32.6	0.71	49.9	0.379
eCO ₂	28.1	0.58	58.9	0.334
		(ii) Horsham		
Ambient	60.1	1.33	55.0	0.451
eCO ₂	96.0	1.95	64.6	0.995
		(iii) Hamilton		
Ambient	47.1	1.02	9.1	0.081
eCO ₂	57.7	0.96	10.7	0.063
		ANOVA		
CO ₂	0.06	n.s.	n.s.	n.s.
Soil type	< 0.001	< 0.001	<0.001	0.001
CO ₂ x soil	0.039	0.06	n.s.	0.038

Management

G * E * M

80% of variability in WA wheat yields can be explained by:
 E = 80% ; M = 6% and G = 3%

(Anderson et al 2010 FCR **116**, 14-22)

 1884 – 1982: most gains in WA & SA wheat yields via breeding but 2/3rds of subsequent yield increase via management (Turner & Asseng 2005 AJAR 56, 1123-1136)

Improved Management

- Rotation options (overcoming disease and weed/pest control)
- Reduced tillage (better rainfall infiltration & soil structure)
- Improved nutrition (fertilisers and legume rotations)
- More timely management e.g. sowing via larger machinery and GPS
- Herbicides

Increasing productivity in the Australian grain production since 1840

D.J. Connor / Europ. J. Agronomy 21 (2004) 419-431

Nutrient Use Efficiency Where Australia sits internationally

Region	Cereal PFP kg grain / kg N	Cereal PNB kg N / kg N
Australia	52	0.82
North America	45	0.68
SS Africa	123	1.89
East Asia	32	0.46
World	44	0.66

Source: R Norton (IPNI)

Plant use of Fertiliser, Topsoil and Subsoil P

 Very small proportion of crop P derived from fertiliser (< 30%; average ca. 15%)

Source: Mcbeath et al (2012)

Different fertiliser formulations can improve nutrient use efficiency (but rarely cost effective)

Australian grain production is already significantly limited by poor soil fertility (chemical , physical and biological)

Corporation

profitable subsoils group

Rootzone Soil Constraints- Physical, Chemical and Biological

Grains Research & Development Corporation

Management challenges: Soil constraints

Managing high spatial and temporal variability

Grain yield of lentil

8 Grain yield (g/core) 6 02-355L*03HS005 CIPAL415 4 Nugget 2 0 **Barbers** Smiths

Effect of soil type on grain yield of lentil genotypes

Genetic solutions rely on knowing what are the main constraints

Development Corporation

New technologies to improve management

- Greater access to data/knowledge (e.g. Internet/ E-Agriculture)
- Remote sensing / micro-sensors (real time information)
- Understanding G * E * M Better targeting of constraints that impact on Australian growers (cf. those in Europe and North America)
- Robotics (Labour saving)
- Weather & Seasonal forecasting

But:

- Profitability (\$) rules, not greater production per se.
- Focus on value of production (less produce sold at higher prices)
- Increased energy / transport costs access to O/S markets
- Intensification implies greater risk e.g. high yielding crops require greater inputs e.g. fertiliser N
- Greater management skill required
- Need for greater resilience (especially for extreme climate events)
- Consolidation of enterprises (e.g. larger corporate farms?) : political and social implications

Most issues require political & social solutions, not just better technology

Thank you

THE UNIVERSITY OF MELBOURNE

Department of Environment and State Government V Victoria Primary Industries

Direct assessment of crop utilisation and recovery of ¹⁵N labelled urea at 3 sites of NW Victoria (1998)

SoilFACE

	0-10	0-10	80-100	80-100	
	cm	cm	cm	cm	
	Total N(%)	рН (CaCl ₂)	рН (CaCl ₂)	EC (dS/m)	
Hamilton	0.403	4.5	6.8	0.16	
Horsham	0.083	7.7	8.3	1.85	
Walpeup	0.052	5.9	8.6	0.53	
	1 Section			PORT AND	-

Mallee Calcarosol (MP4)

Wimmera Vertosol Hamilton Chromosol (PV13)

Source: Anderson et al (2005) AJAR 56, 1137-1149