

Performance of traits in a high CO₂ world – Examples from the AGFACE project

For the AGFACE team: Sabine Tausz-Posch

Traits for the future - Background

FACT:

Current pre-breeding research focuses on the contribution of traits to enhance field performance and end-product outcome

In low-rainfall agriculture current traits in focus include, e.g.:

- Tillering
- Transpiration efficiency
- Water soluble carbohydrates
- ☐ High early vigour
- ☐ Root systems etc.

Atmospheric CO₂:

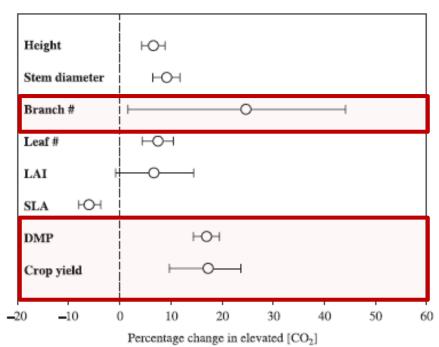
- □ Rising atmospheric CO₂ instantaneously alters photosynthetic CO₂ fixation (A) and stomatal conductance (g_s)
- ☐ Effects on growth, water relations and productivity

AGFACE:

How will selected traits perform in a high ${\it CO}_2$ world? Results will be passed on to pre-breeders and can become selection targets for breeding efforts

Trait: Tillering capacity

RESTRICTED TILLERING:


- Advantage under terminal drought conditions (Duggan et al. 2005)
- ☐ Mitchell et al. 2013 J. Exp. Bot.: Tin (tiller inhibition) lines had up to 51% fewer screenings and up to 11% more yield under terminal drought

Source: http://www csiro.au

HOWEVER:

- Elevated CO₂ promotes growth and yield
- Effect linked to increased biomass and tillers
- ☐ Effect less linked to other yield components (Ziska 2008)

Trait: Tillering capacity

Research questions:

- 1. Does a freely tillering cultivar benefit more from elevated CO₂ in terms of growth and yield?
- 2. To what extent is the restricted tillering trait maintained under high CO₂? Can it benefit from additional CO₂ at all?

2009 and 2010 (commercial varieties):

Cv. Silverstar: a freely tillering variety

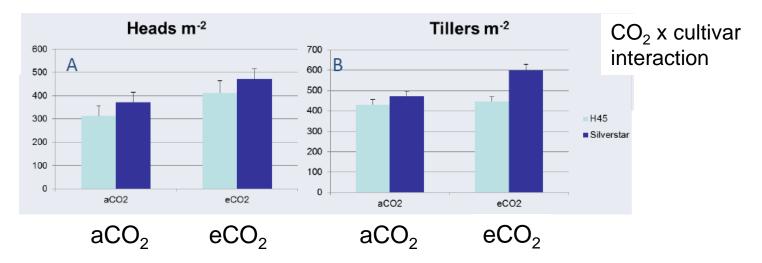
Cv. **H45:** a restricted tillering variety

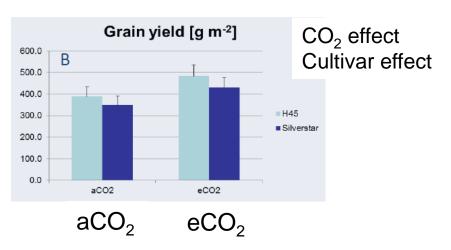
2011 and 2012 (CSIRO tiller inhibition (tin) line):

Cv. Silverstar: a freely tillering variety

Cv. Silverstar – tin line T65 (SSR T65): a restricted

tillering line


H45 Silverstar



Tillering results: e.g. H45 vs. Silverstar

CO₂ effect Cultivar effect

Silverstar =

Tillering: Conclusion

- Tillering increased under CO₂ enrichment in both free and inhibited tillering lines/cultivars
- The relative ranking in tillering (free vs. restricted) was maintained
- High tillering alone does not ensure greater benefits from the CO₂ fertilisation effect. The restricted tillering cultivar can compensate for smaller gains during vegetative growth through greater gains during spike development and grain filling

Australian Grains Free Air CO₂ Enrichment (AGFACE) program

Elevated CO₂ stimulates yield of a restricted tillering and a freely tillering wheat cultivar to a similar extent

Sabine Tausz-Posch¹, Raymond W. Dempsey^{1,*}, Saman Seneweera^{1,+}, Robert M. Norton³, Glenn J. Fitzgerald², Michael Tausz¹

¹University of Melbourne, ²Department of Environment and Primary Industries, ³International Plant Nutrition Institute

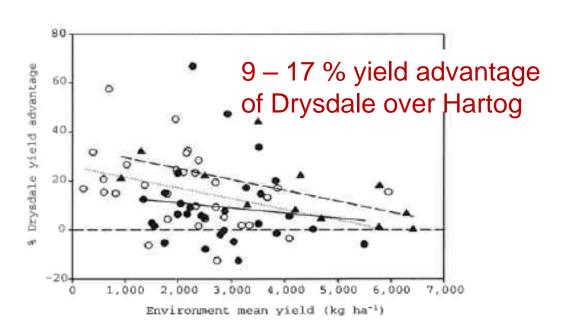
*present address: James Cook University *present address: University of Southern Queensland

Australian Grains Free Air CO₂ Enrichment (AGFACE) program

Is the reduced-tillering trait (tin) beneficial under elevated CO₂ in four FACE environments?

Markus Löw*, S Tausz-Posch*, G Rebetzke§, F Dreccer#, S Chapman#, S Seneweera*, G Fitzgerald%, M Tausz‡

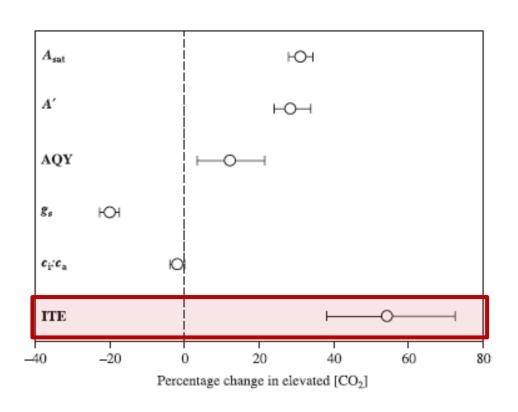
*Dept. of Agriculture and Food Systems, *Dept. of Forest and Ecosystem Sciences, The University of Melbourne, Creswick §#CSIRO Plant Industry, §Canberra / *Brisbane, *Department of Environment and Primary Industries, Horsham



Trait: Transpiration Efficiency

- Carbon gained per water lost
- Plants vary how efficient they exchange water for CO₂
 - cv. Drysdale superior transpiration efficiency
 - cv. Hartog low transpiration efficiency

Drysdale has lower Δ^{13} C than Hartog

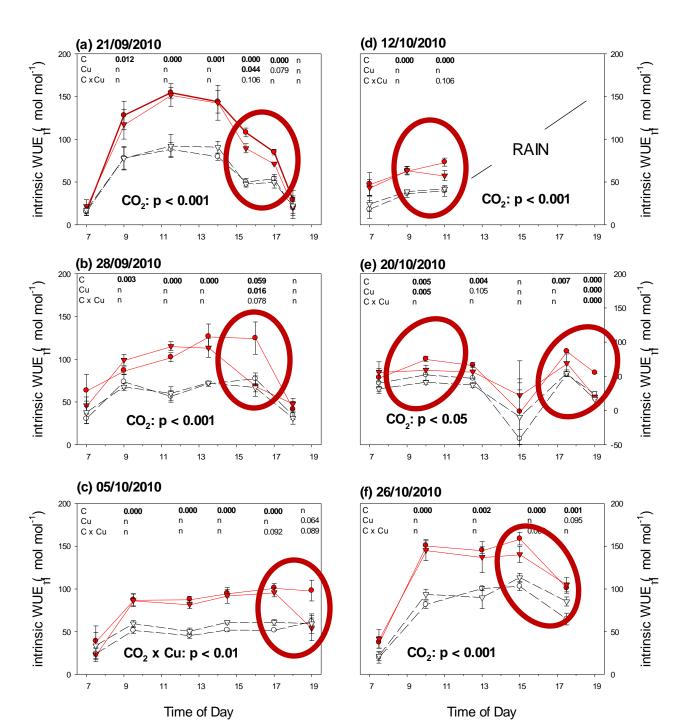


Rebetzke et al. (2009) Wheat: Science and Trade 215-249

Trait: Transpiration Efficiency

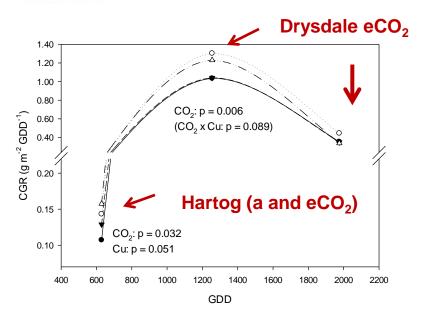
Transpiration efficiency (TE) increases under elevated CO₂

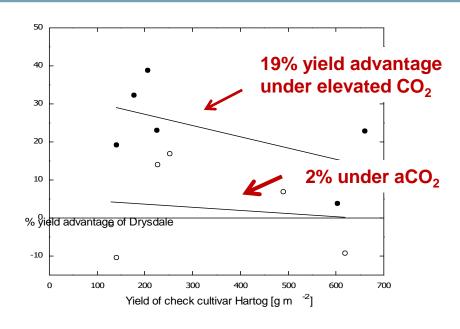
Research question:


Will a trait selection for superior TE efficiency still be beneficial under future elevated CO₂?

Ainsworth and Long 2004, New Phytologist ITE = instantenous transpiration efficiency

Intrinsic Transpiration Efficiency:


Hartog (▽,▼) Drysdale (○,●)


ambient [CO₂] elevated [CO₂]

What about Yield?

Conclusion:

- ☐ The trait of superior transpiration efficiency is maintained under high CO₂
- ☐ Superior transpiration efficiency may become an advantage in environments where this is not evident under current CO₂

Australian Grains Free Air CO₂ Enrichment (AGFACE) program

Can the trait of superior transpiration efficiency be maintained in a high CO₂ world?

More Traits

Water soluble carbohydrates (WSC)

Experimental lines (CSIRO): SB003 low carbohydrate accumulation

SB062 high carbohydrate accumulation

WSC also in Silverstar / H45 poster and Silverstar / Silverstar tin poster

Australian Grains Free Air CO₂ Enrichment (AGFACE) program

Is an increased carbohydrate-storage trait benefical

under elevated CO₂?

Markus Löw*, S Tausz-Posch*, G Rebetzke§, F Dreccer#, S Chapman#, S Seneweera*, G Fitzgerald%, M Tausz‡

High early vigour and root traits

Yitpi and Scout (good early vigour, CSIRO transpiration efficiency gene)

Putative nitrogen use efficiency of wheat cultivars in interaction with soil nitrogen and root traits under elevated CO₂

Helale Bahrami¹, Roger Armstrong², Glenn Fitzgerald², Michael Tausz¹, Sabine Tausz-Posch¹

THE UNIVERSITY OF MELBOURNE

Heat and field peas

EFFECTS OF HEAT: High early vigour and root traits

Yitpi and Scout (good early vigour, CSIRO transpiration efficiency gene)

Effects of elevated CO₂ and heat stress applied prior and after anthesis on the remobilisation of nitrogen and carbohydrate in wheat main stems

Allene Macabuhay¹, Glenn Fitzgerald², James Nuttall², Michael Tausz¹, Sabine Tausz-Posch¹

FIELD PEAS:

- ☐ Traits such as for wheat are not available for peas
- □ Different types of field peas in regard to genotypic variability under elevated CO₂ were tested

Elevated CO₂ increases yields of field peas and the N contribution for the subsequent crop

Maryse Bourgault¹, Glenn Fitzgerald², Jason Brand², Michael Tausz¹

